CHIRAL RELAXATION REAGENTS (CRR) IN ¹³C NMR SPECTROSCOPY: FIRST DETERMINATION OF ENANTIOMERIC EXCESS

Edgar Hofer* and Regina Keuper

Institut für Organische Chemie, Universität Hannover, Schneiderberg 1 B, D-3000 Hannover 1

<u>Summary</u>: A simple method is described for determination of enantiomeric excess by the use of chiral relaxation reagents in ^{13}C NMR spectroscopy.

Optically active gadolinium(III) compounds, like the well known chiral shift reagents, form diastereomeric complexes with enantiomers. For (+) and (-)methylephedrine we recently demonstrated that these diastereomeric complexes give identical chemical shift values but differ substantially in their carbon-13 relaxation rates.¹ We now report that these differing relaxation rates can be used quantitatively, e.g. for the determination of enantiomeric excess.

Scheme 1

Enantiomers R and S and chiral relaxation reagent CRR form diastereomeric complexes R_m ... CRR_n and S_m ...CRR_n in a first reversible step (Scheme 1). The 180° pulse of the inversion recovery sequence builds up net magnetizations M_R and M_S , which relaxe to thermal equilibrium with the rate constants k_R and k_S ($k_R \neq k_S$). The analytical 90° pulse, applied at variable time intervals t_1 , causes time dependent ¹³C NMR signal intensities I_{R+S} for all carbon atoms with identical chemical shifts for both enantiomers. The intensity I_{R+S} depends on the rate constants k_R and k_S and the concentration of enantiomers R and S. Formally this is an analogy to first order reactions of two compounds A and B, forming a common product C. Here, the integrated rate law is given by log ($[C_{\infty}]$ -[C]) = log ($[A_0]e^{-k}A^t + [B_0]e^{-k}B^t$) and the rate constants k_A and k_B and the initial concentrations of A and B may be calculated by a simple graphical method.² In our case the intensity I_{R+S} represents the common product C. Therefore, a plot of log ($I_{\infty} - I_t$) versus time does not yield a straight line, if $k_R \neq k_S$. After the enantiomer with the higher relaxation rate has relaxed, the semilogarithmic plot now defines a straight line, allowing extrapolation to $t_1 = 0$. The intercept with the y axis gives the value of $\rm I_{to}$ for one enantiomer. Thus the enantiomeric composition, and hence the enantiomeric excess ee, may be calculated from the values of $\rm I_{\infty}$ and $\rm I_{to}.$

To check our method we prepared enantiomeric mixtures of (+) and (-)methylephedrine and also of (+) and (-)camphor by weight and performed ¹³C inversion recovery experiments³ in the presence of chiral relaxation reagent Gd(dcm)₃ <u>1</u> with each mixture. Figure 1 gives the semilogarithmic T₁ plot for the signal at $\delta = 72.4$ ppm of methylephedrine. The plot clearly shows the deviation from a straight line for short time intervals t₁. The plotted straight line reflects the final linear portion and is used for extrapolating to t₁ = 0. The calculated enantiomeric compositions are given in Table 1 and are in good agreement with the prepared compositions.

Figure 1. Plot of log $(I_{\infty} - I_{t})_{4}$ versus time for methylephedrine (shown are the intensities of the signal at δ = 72.4 ppm).

lable 1.	
----------	--

Determination of Enantiomeric Composition

Compound	Proportion of by weight c [mg] /[%]	Enantiomers alculated [%]	Gd(dem) ₃ / Solvent [mg]
(+)Methyl- ephedrine	407.7/80.3	78.8	2.83/
(-)Methyl- ephedrine	101.0/19.7	-	CDC13
(+)Methyl-	346.5/69.8	69.2	2.83/
(-)Methyl- ephedrine	150.0/30.2	-	CDC13
(+)Methyl-	300.0/59.8	57.3	2.83/
ephedrine (-)Methyl- ephedrine	201.4/40.2	-	CDC13
(-)Camphor (+)Camphor	319.0/62.9 188.0/37.1	63.9	0.94/ C ₆ H ₁₂ +C ₆ D

Note that the enantiomeric composition may be determined in one experiment by carbon-13 T_1 measurements without knowing the spin lattice relaxation times of the pure enantiomers or their difference. On the other hand the relaxation rates k_R and k_S of the diastereomeric complexes must differ substantially for reasonable accurate determinations of enantiomeric excess. Our results show that this is fullfilled even for substrates like camphor.

References and Notes

- 1. Hofer, E., Keuper, R., and Renken, H., Tetrahedron Lett., 25, 1141 (1984).
- 2. Brown, H.C. and Fletcher, R.S., J.Am.Chem.Soc., <u>71</u>, 1845 (1949).
- 3. Inversion recovery $(180^{\circ}-t_1 90^{\circ}-t_2)_n$ experiments were performed on a Bruker WP 80.
- 4. Experimental condition: 1.21 M (+)methylephedrine (69.8%); 0.52 M (-)methylephedrine; 1.58 x 10⁻³ M Gd(dcm)₃; Solvent: CDCl₃.

(Received in Germany 11 August 1984)