CHIRAL RELAXATION REAGENTS **(CRR)** IN 13c NMR SPECTROSCOPY: FIRST DETERMINATION OF ENANTIOMERIC EXCESS

Edgar Hofer* and Regina Keuper

Institut für Organische Chemie, Universität Hannover, Schneiderberg 1 B, D-3000 Hannover 1

Summary: A simple method is described for determination of enantiomeric excess by the use of chiral relaxation reagents in $13C$ NMR spectroscopy.

Optically active gadolinium(II1) compounds, like the well known chiral shift reagents, form diastereomeric complexes with enantiomers. For $(+)$ and $(-)$ methylephedrine we recently demonstrated that these diastereomeric complexes give identical chemical shift values but differ substantially in their carbon-13 relaxation rates. $^{\rm 1}$ We now report that these differing relaxation rates can be used quantitatively, e.g. for the determination of enantiomeric excess.

Scheme 1

Enantiomers R and S and chiral relaxation reagent CRR form diastereomeric complexes $\mathsf{R}_{\mathsf{m}}\ldots$ CRR_n and $S_m \ldots CRR_n$ in a first reversible step (Scheme 1). The 180° pulse of the inversion recovery sequence builds up net magnetizations M_R and M_S , which relaxe to thermal equilibrium with the rate constants k_R and k_S (k_R \neq k_S). The analytical 90° pulse, applied at variable time intervals t₁, causes time dependent ¹³C NMR signal intensities I_{R+S} for all carbon atoms with identical chemical shifts for both enantiomers. The intensity I_{R+S} depends on the rate constants k_R and k_S and the concentration of enantiomers R and S. Formally this is an analogy to first order reactions of two compounds A and 8, forming a common product C. Here, the integrated rate law is given by log ($[c_{\infty}]-[C]$) = log ($[A_{0}]e^{-k}A^{t} + [B_{0}]e^{-k}B^{t}$) and the rate constants k_A and k_B and the initial concentrations of A and B may be calculated by a simple graphical method. 25 In our case the intensity $I_{\mathsf{p}_\textsf{+C}}$ represents the common product C. Therefore, a plot of log (I $_{\infty}$ - I $_{\rm t}$) versus time does not yield a straight line, if k $_{\rm p}$ \neq k $_{\rm c}$. After the enantiomer with the higher relaxation rate has relaxed, the semilogarithmic plot now defines a straight line, allowing extrapolation to t_l = 0. The intercept with the y axis gives the

value of $I_{\rm{to}}$ for one enantiomer. Thus the enantiomeric composition, and hence the enantiomeric excess ee, may be calculated from the values of I_{∞} and $I_{\dagger\alpha}$.

To check our method we prepared enantiomeric mixtures of (+) and (-)methylephedrine and also of (+) and (-)camphor by weight and performed 13 C inversion recovery experiments³ in the presence of chiral relaxation reagent Gd(dcm)_3 $\frac{1}{1}$ with each mixture. Figure 1 gives the semilogarithmic T₁ plot for the signal at $\delta = 72.4$ ppm of methylephedrine. The plot clearly shows the deviation from a straight line for short time intervals t_1 . The plotted straight line reflects the final linear portion and is used for extrapolating to $t_1 = 0$. The calculated enantiomeric compositions are given in Table 1 and are in good agreement with the prepared compositions.

Figure 1. Plot of log (I $_{\infty}$ - I_t), versus time for methylephedrine^r (shown are the intensities of the signal at δ = 72.4 ppm).

Determination of Enantiomeric Composition

Note that the enantiomeric composition may be determined in one experiment by carbon-13 I_1 measurements without knowing the spin lattice relaxation times of the pure enantiomers or their difference. On the other hand the relaxation rates k_R and k_S of the diastereomeric complexes must differ substantially for reasonable accurate determinations of enantiomeric excess. Our results show that this is fullfilled even for substrates like camphor.

References and Notes

- l. Hofer, E., Keuper, R., and Renken, H., Tetrahedron Lett., $\underline{25}$, 1141 (1984).
- 2. Brown, H.C. and Fletcher, R.S., J.Am.Chem.Soc., 71, 1845 (1949).
- 3. Inversion recovery (180°-t₎ 90°-t₂)_c experiments were performed on a Bruker WP 80.
- 4. Experimental condition: 1.21 M (+)methylephedrine (69.8%); 0.52 M (-jmethylephedrine; 1.58 x 10^{-3} M Gd(dcm)₃; Solvent: CDC1₃.

(Received in Germany 11 August 1984)